We studied the temporal variation of bright points (BPs) in the quiet region and in the coronal hole. Time series of X-ray images show significant emission increases in BPs with durations shorter than 10 min. Since these impulsive brightenings are frequently found all over the Sun, study of their mechanism is important for understanding the dynamics in the quiescent corona.

Characteristics of light curves of BPs in the transition region and in the corona are similar to those of solar flares, though at a much smaller scale. Fast raster scans with SOHO/SUMER and Hinode/EIS allowed us to obtain light curves in multiple emission lines. At the peak of X-ray flux, a significant emission in Fe XV (2MK), which is normally very weak in BPs, is detected. In addition, diagnostic using the Fe XII line pair indicate density increase in BPs. These results suggest that impulsive heating takes place in the corona, which causes chromospheric evaporation supplying hot plasma into coronal loops. After the X-ray peak, delayed emission increase in He II and O IV is observed, which is interpreted as the cooling of hot plasma. We will discuss the relationship between these small scale flares and jets.