Using simultaneous RHESSI and SDO data, we study chromospheric heights of hard X-ray (HXR), EUV and white-light continuum sources in a well observed gamma-ray solar flare. HXr visibility approach allows us to determine the height of the HXR sources as a function of energy above the photosphere. Co-aligning AIA/SDO and HMI/SDO images with 35-100 keV HXR RHESSI data, we infer the heights and characteristic densities of HXR, EUV and continuum sources in a flaring footpoint. The maximum of white-light emission appears between the HXR and EUV emission presumably in the transition between ionized and neutral atmospheres. We note that the energy deposited by low energy electrons is sufficient to explain the energetics of optical and UV emissions.