The bi-directed, fast Doppler motion of explosive events observed spectroscopically in the transition region emission is classically interpreted as a pair of jets moving upward and downward from a reconnection site. We discuss the problems of such a model and provide evidence for an alternative scenario to explain the nature of so-called ‘explosive events’. The discrepancy of fast Doppler motion without detectable motion in the image plane is an old, unsolved problem. We now provide the spectral tilt and the jet bifurcation as additional arguments. Both features are indicative of rotational motion in narrow structures. We interpret the bifurcation as the result of rotation of hollow cylindrical structures and demonstrate that such a sheath model can also be applied to explain the nature of the puzzling ‘explosive events’. We find that the spectral tilt, the lack of apparent motion, the bifurcation, and a rapidly growing number of direct observations support an alternative scenario of linear, spicular-sized jets with a strong spinning motion.