We present new SMART-1 results recently published and give a synthesis of mission highlights and legacy. SMART-1 demonstrated the use of Solar Electric Propulsion that will be useful for Bepi-Colombo and future deep-space missions, tested new technologies for spacecraft and instruments miniaturisation, and provided an opportunity for science [1-12]. The SMART-1 spacecraft operated on a science orbit for 18 months until impact on 3 September 2006. To date, 72 refereed papers and more than 325 conference or technical papers have been published based on SMART-1 (see ADS on SMART-1 scitech website). The SMART-1 data are accessible on the ESA Planetary Science Archive PSA [13]. Recent SMART-1 published results using these archives include: Multi-angular photometry of Mare and specific regions to diagnose the regolith roughness and to constrain models of light reflection and scattering [14] that can be extended to understand the surface of other moons and asteroids; the SMART-1 impact observed from Earth was modelled using laboratory experiments predicting the size of asymmetric crater and ejecta [15]; the lunar North and South polar illumination was mapped and monitored over the entire year, permitting to identify -1 peaks of quasi-eternal light” and to derive their topography [16, 17]; SMART-1 was also used for radio occultation experiments [18], and the X-Ray Solar Monitor data were used for activity and are studies of the Sun as a star in conjunction with GOES AND RHESSI [19] or to design future coronal X-ray instruments [20]. The SMART-1 archive observations have been used to support Kaguya, Chandrayaan-1, Chang’E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, and to characterise potential sites relevant for lunar science and future exploration. Credits and links: we acknowledge members of SMART-1 Science and Technology Working Team and collaborators.
